Figure: An early test of our new 3-D agent-based cell model, growing from 10 to 80,000 agents in about 25 days (24-threaded simulation required about 5 hours). Rendered in 3D using POVRAY (with a cutaway view). [Read more ...]

Monday, May 14, 2012

Giving a talk at the PSOC Monthly Seminar

This is a definitely a thrill for me--I'm giving this month's talk at the USC PSOC seminar series. This should be a great opportunity to get the word out on what we're all about. In an unrelated note, be on the lookout for more frequent postings here (including some long promised to my friends in the SMB!)
Here are the talk details:

Date / Time: Friday, May 18, 2012, noon - 1:00 pm
Room / Building: Harkness Auditorium; HSC Clinical Sciences Building, 2nd Floor; 
Address: 2250 Alcazar St., Los Angeles, CA 90033
Lunch: Free pizza at 11:45!
Title: The Emerging Role of Patient-Calibrated Computational Modeling in Cancer Research: A Case Study in Ductal Carcinoma in Situ (DCIS)

Abstract: Current clinical oncology practice can generate a wide variety of data for patients. Radiology is used both to detect and plan surgical excisions. Immunostains performed on pre-surgical biopsies are used to diagnose (and grade) the cancers and select therapeutic agents. Molecular profiling may also help stratify patients and select therapeutic agents. However, there is currently no technique to quantitatively combine these diverse data sources, along with novel in vitro measurements, to improve surgical and therapeutic planning. In this talk, we will discuss efforts by my lab (MathCancer.org) and the Center for Applied Molecular Medicine to solve this issue. We will focus on developing and calibrating biologically-grounded computational models to individual patients (particularly ductal carcinoma in situ), encouraging (and validated!) results in quantitatively predicting clinical progression, the implications for making and quantitatively testing biological hypotheses, and the role of mathematical modeling in facilitating a deeper understanding of biology, pathology, and radiology. We anticipate that such efforts will play an increasing role in driving experimental cell biology, testing and challenging current cancer biology orthodoxy, and ultimately improving clinical care. 

Return to News   Return to MathCancer